(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
active(f(b, X, c)) → mark(f(X, c, X))
active(c) → mark(b)
active(f(X1, X2, X3)) → f(X1, active(X2), X3)
f(X1, mark(X2), X3) → mark(f(X1, X2, X3))
proper(f(X1, X2, X3)) → f(proper(X1), proper(X2), proper(X3))
proper(b) → ok(b)
proper(c) → ok(c)
f(ok(X1), ok(X2), ok(X3)) → ok(f(X1, X2, X3))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
f(X1, mark(X2), X3) →+ mark(f(X1, X2, X3))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [X2 / mark(X2)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
active(f(b, X, c)) → mark(f(X, c, X))
active(c) → mark(b)
active(f(X1, X2, X3)) → f(X1, active(X2), X3)
f(X1, mark(X2), X3) → mark(f(X1, X2, X3))
proper(f(X1, X2, X3)) → f(proper(X1), proper(X2), proper(X3))
proper(b) → ok(b)
proper(c) → ok(c)
f(ok(X1), ok(X2), ok(X3)) → ok(f(X1, X2, X3))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
active(f(b, X, c)) → mark(f(X, c, X))
active(c) → mark(b)
active(f(X1, X2, X3)) → f(X1, active(X2), X3)
f(X1, mark(X2), X3) → mark(f(X1, X2, X3))
proper(f(X1, X2, X3)) → f(proper(X1), proper(X2), proper(X3))
proper(b) → ok(b)
proper(c) → ok(c)
f(ok(X1), ok(X2), ok(X3)) → ok(f(X1, X2, X3))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Types:
active :: b:c:mark:ok → b:c:mark:ok
f :: b:c:mark:ok → b:c:mark:ok → b:c:mark:ok → b:c:mark:ok
b :: b:c:mark:ok
c :: b:c:mark:ok
mark :: b:c:mark:ok → b:c:mark:ok
proper :: b:c:mark:ok → b:c:mark:ok
ok :: b:c:mark:ok → b:c:mark:ok
top :: b:c:mark:ok → top
hole_b:c:mark:ok1_0 :: b:c:mark:ok
hole_top2_0 :: top
gen_b:c:mark:ok3_0 :: Nat → b:c:mark:ok
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
active,
f,
proper,
topThey will be analysed ascendingly in the following order:
f < active
active < top
f < proper
proper < top
(8) Obligation:
TRS:
Rules:
active(
f(
b,
X,
c)) →
mark(
f(
X,
c,
X))
active(
c) →
mark(
b)
active(
f(
X1,
X2,
X3)) →
f(
X1,
active(
X2),
X3)
f(
X1,
mark(
X2),
X3) →
mark(
f(
X1,
X2,
X3))
proper(
f(
X1,
X2,
X3)) →
f(
proper(
X1),
proper(
X2),
proper(
X3))
proper(
b) →
ok(
b)
proper(
c) →
ok(
c)
f(
ok(
X1),
ok(
X2),
ok(
X3)) →
ok(
f(
X1,
X2,
X3))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: b:c:mark:ok → b:c:mark:ok
f :: b:c:mark:ok → b:c:mark:ok → b:c:mark:ok → b:c:mark:ok
b :: b:c:mark:ok
c :: b:c:mark:ok
mark :: b:c:mark:ok → b:c:mark:ok
proper :: b:c:mark:ok → b:c:mark:ok
ok :: b:c:mark:ok → b:c:mark:ok
top :: b:c:mark:ok → top
hole_b:c:mark:ok1_0 :: b:c:mark:ok
hole_top2_0 :: top
gen_b:c:mark:ok3_0 :: Nat → b:c:mark:ok
Generator Equations:
gen_b:c:mark:ok3_0(0) ⇔ b
gen_b:c:mark:ok3_0(+(x, 1)) ⇔ mark(gen_b:c:mark:ok3_0(x))
The following defined symbols remain to be analysed:
f, active, proper, top
They will be analysed ascendingly in the following order:
f < active
active < top
f < proper
proper < top
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
f(
gen_b:c:mark:ok3_0(
a),
gen_b:c:mark:ok3_0(
+(
1,
n5_0)),
gen_b:c:mark:ok3_0(
c)) →
*4_0, rt ∈ Ω(n5
0)
Induction Base:
f(gen_b:c:mark:ok3_0(a), gen_b:c:mark:ok3_0(+(1, 0)), gen_b:c:mark:ok3_0(c))
Induction Step:
f(gen_b:c:mark:ok3_0(a), gen_b:c:mark:ok3_0(+(1, +(n5_0, 1))), gen_b:c:mark:ok3_0(c)) →RΩ(1)
mark(f(gen_b:c:mark:ok3_0(a), gen_b:c:mark:ok3_0(+(1, n5_0)), gen_b:c:mark:ok3_0(c))) →IH
mark(*4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
active(
f(
b,
X,
c)) →
mark(
f(
X,
c,
X))
active(
c) →
mark(
b)
active(
f(
X1,
X2,
X3)) →
f(
X1,
active(
X2),
X3)
f(
X1,
mark(
X2),
X3) →
mark(
f(
X1,
X2,
X3))
proper(
f(
X1,
X2,
X3)) →
f(
proper(
X1),
proper(
X2),
proper(
X3))
proper(
b) →
ok(
b)
proper(
c) →
ok(
c)
f(
ok(
X1),
ok(
X2),
ok(
X3)) →
ok(
f(
X1,
X2,
X3))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: b:c:mark:ok → b:c:mark:ok
f :: b:c:mark:ok → b:c:mark:ok → b:c:mark:ok → b:c:mark:ok
b :: b:c:mark:ok
c :: b:c:mark:ok
mark :: b:c:mark:ok → b:c:mark:ok
proper :: b:c:mark:ok → b:c:mark:ok
ok :: b:c:mark:ok → b:c:mark:ok
top :: b:c:mark:ok → top
hole_b:c:mark:ok1_0 :: b:c:mark:ok
hole_top2_0 :: top
gen_b:c:mark:ok3_0 :: Nat → b:c:mark:ok
Lemmas:
f(gen_b:c:mark:ok3_0(a), gen_b:c:mark:ok3_0(+(1, n5_0)), gen_b:c:mark:ok3_0(c)) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_b:c:mark:ok3_0(0) ⇔ b
gen_b:c:mark:ok3_0(+(x, 1)) ⇔ mark(gen_b:c:mark:ok3_0(x))
The following defined symbols remain to be analysed:
active, proper, top
They will be analysed ascendingly in the following order:
active < top
proper < top
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol active.
(13) Obligation:
TRS:
Rules:
active(
f(
b,
X,
c)) →
mark(
f(
X,
c,
X))
active(
c) →
mark(
b)
active(
f(
X1,
X2,
X3)) →
f(
X1,
active(
X2),
X3)
f(
X1,
mark(
X2),
X3) →
mark(
f(
X1,
X2,
X3))
proper(
f(
X1,
X2,
X3)) →
f(
proper(
X1),
proper(
X2),
proper(
X3))
proper(
b) →
ok(
b)
proper(
c) →
ok(
c)
f(
ok(
X1),
ok(
X2),
ok(
X3)) →
ok(
f(
X1,
X2,
X3))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: b:c:mark:ok → b:c:mark:ok
f :: b:c:mark:ok → b:c:mark:ok → b:c:mark:ok → b:c:mark:ok
b :: b:c:mark:ok
c :: b:c:mark:ok
mark :: b:c:mark:ok → b:c:mark:ok
proper :: b:c:mark:ok → b:c:mark:ok
ok :: b:c:mark:ok → b:c:mark:ok
top :: b:c:mark:ok → top
hole_b:c:mark:ok1_0 :: b:c:mark:ok
hole_top2_0 :: top
gen_b:c:mark:ok3_0 :: Nat → b:c:mark:ok
Lemmas:
f(gen_b:c:mark:ok3_0(a), gen_b:c:mark:ok3_0(+(1, n5_0)), gen_b:c:mark:ok3_0(c)) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_b:c:mark:ok3_0(0) ⇔ b
gen_b:c:mark:ok3_0(+(x, 1)) ⇔ mark(gen_b:c:mark:ok3_0(x))
The following defined symbols remain to be analysed:
proper, top
They will be analysed ascendingly in the following order:
proper < top
(14) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol proper.
(15) Obligation:
TRS:
Rules:
active(
f(
b,
X,
c)) →
mark(
f(
X,
c,
X))
active(
c) →
mark(
b)
active(
f(
X1,
X2,
X3)) →
f(
X1,
active(
X2),
X3)
f(
X1,
mark(
X2),
X3) →
mark(
f(
X1,
X2,
X3))
proper(
f(
X1,
X2,
X3)) →
f(
proper(
X1),
proper(
X2),
proper(
X3))
proper(
b) →
ok(
b)
proper(
c) →
ok(
c)
f(
ok(
X1),
ok(
X2),
ok(
X3)) →
ok(
f(
X1,
X2,
X3))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: b:c:mark:ok → b:c:mark:ok
f :: b:c:mark:ok → b:c:mark:ok → b:c:mark:ok → b:c:mark:ok
b :: b:c:mark:ok
c :: b:c:mark:ok
mark :: b:c:mark:ok → b:c:mark:ok
proper :: b:c:mark:ok → b:c:mark:ok
ok :: b:c:mark:ok → b:c:mark:ok
top :: b:c:mark:ok → top
hole_b:c:mark:ok1_0 :: b:c:mark:ok
hole_top2_0 :: top
gen_b:c:mark:ok3_0 :: Nat → b:c:mark:ok
Lemmas:
f(gen_b:c:mark:ok3_0(a), gen_b:c:mark:ok3_0(+(1, n5_0)), gen_b:c:mark:ok3_0(c)) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_b:c:mark:ok3_0(0) ⇔ b
gen_b:c:mark:ok3_0(+(x, 1)) ⇔ mark(gen_b:c:mark:ok3_0(x))
The following defined symbols remain to be analysed:
top
(16) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol top.
(17) Obligation:
TRS:
Rules:
active(
f(
b,
X,
c)) →
mark(
f(
X,
c,
X))
active(
c) →
mark(
b)
active(
f(
X1,
X2,
X3)) →
f(
X1,
active(
X2),
X3)
f(
X1,
mark(
X2),
X3) →
mark(
f(
X1,
X2,
X3))
proper(
f(
X1,
X2,
X3)) →
f(
proper(
X1),
proper(
X2),
proper(
X3))
proper(
b) →
ok(
b)
proper(
c) →
ok(
c)
f(
ok(
X1),
ok(
X2),
ok(
X3)) →
ok(
f(
X1,
X2,
X3))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: b:c:mark:ok → b:c:mark:ok
f :: b:c:mark:ok → b:c:mark:ok → b:c:mark:ok → b:c:mark:ok
b :: b:c:mark:ok
c :: b:c:mark:ok
mark :: b:c:mark:ok → b:c:mark:ok
proper :: b:c:mark:ok → b:c:mark:ok
ok :: b:c:mark:ok → b:c:mark:ok
top :: b:c:mark:ok → top
hole_b:c:mark:ok1_0 :: b:c:mark:ok
hole_top2_0 :: top
gen_b:c:mark:ok3_0 :: Nat → b:c:mark:ok
Lemmas:
f(gen_b:c:mark:ok3_0(a), gen_b:c:mark:ok3_0(+(1, n5_0)), gen_b:c:mark:ok3_0(c)) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_b:c:mark:ok3_0(0) ⇔ b
gen_b:c:mark:ok3_0(+(x, 1)) ⇔ mark(gen_b:c:mark:ok3_0(x))
No more defined symbols left to analyse.
(18) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_b:c:mark:ok3_0(a), gen_b:c:mark:ok3_0(+(1, n5_0)), gen_b:c:mark:ok3_0(c)) → *4_0, rt ∈ Ω(n50)
(19) BOUNDS(n^1, INF)
(20) Obligation:
TRS:
Rules:
active(
f(
b,
X,
c)) →
mark(
f(
X,
c,
X))
active(
c) →
mark(
b)
active(
f(
X1,
X2,
X3)) →
f(
X1,
active(
X2),
X3)
f(
X1,
mark(
X2),
X3) →
mark(
f(
X1,
X2,
X3))
proper(
f(
X1,
X2,
X3)) →
f(
proper(
X1),
proper(
X2),
proper(
X3))
proper(
b) →
ok(
b)
proper(
c) →
ok(
c)
f(
ok(
X1),
ok(
X2),
ok(
X3)) →
ok(
f(
X1,
X2,
X3))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: b:c:mark:ok → b:c:mark:ok
f :: b:c:mark:ok → b:c:mark:ok → b:c:mark:ok → b:c:mark:ok
b :: b:c:mark:ok
c :: b:c:mark:ok
mark :: b:c:mark:ok → b:c:mark:ok
proper :: b:c:mark:ok → b:c:mark:ok
ok :: b:c:mark:ok → b:c:mark:ok
top :: b:c:mark:ok → top
hole_b:c:mark:ok1_0 :: b:c:mark:ok
hole_top2_0 :: top
gen_b:c:mark:ok3_0 :: Nat → b:c:mark:ok
Lemmas:
f(gen_b:c:mark:ok3_0(a), gen_b:c:mark:ok3_0(+(1, n5_0)), gen_b:c:mark:ok3_0(c)) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_b:c:mark:ok3_0(0) ⇔ b
gen_b:c:mark:ok3_0(+(x, 1)) ⇔ mark(gen_b:c:mark:ok3_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_b:c:mark:ok3_0(a), gen_b:c:mark:ok3_0(+(1, n5_0)), gen_b:c:mark:ok3_0(c)) → *4_0, rt ∈ Ω(n50)
(22) BOUNDS(n^1, INF)